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Theory of dynamic conductivity and plasmon resonance 
in tunnelling superlattices 
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Centre of Theoretical Physics, CCAST (World Laboratory), Beijing, and Department of 
Physics, University of Science and Technology of China, Hefei, Anhui,t People’s 
Republic of China 
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Abstract. The theory of dynamic conductivity in a tunnelling superlattice which is composed 
of interacting electrons with both impurity and phonon scattering is presented using the 
memory-function approach and a newly developed matrix separation technique for the 
density correlation function. Taking into account the overlap of the wavefunctions between 
adjacentsupercells, the memory functionis explicitlyexpressedin terms of the matrixdensity 
correlation function. The contribution of plasmon resonance, which is dependent on the 
tunnelling, is estimated. 

The dynamic conductivity of electrons in superlattices has recently attracted con- 
siderable interest [l, 21. Previous studies of the electric conductivity in the x-y plane 
(where the superlattice axis is taken to be in the z direction), however, were carried out 
based on the assumption of complete confinement of carriers inside quantum wells. The 
electron tunnelling between adjacent wells, which, obviously, may play a role in systems 
with barriers of finite height and width, is neglected. The reason for the lack of a transport 
theory for tunnelling superlattices lay in the difficulty in obtaining a tractable expression 
for the density correlation function of the system. Recently, a new matrix separation 
technique has been developed [3,4] for the density correlation function of a superlattice 
with wavefunction overlap. This technique has been applied to the investigation of the 
plasmon modes of tunnelling superlattice systems. In this paper, we would like to extend 
our study to linear dynamic transport of electrons using the memory function approach 

The superlattice we shall discuss consists of an infinite number of periodically 
arranged supercells of width d. The electrons are free to  move within the x-y plane but 
aresubject to aperiodicpotential U ( z )  in thezdirection. Limited to thelowest miniband, 
the single electron state is described by a wavevector k = ( k , ~ ,  k,) with kil = ( k x ,  k,) and 
- n / d  < k, C n / d .  The single-electron wavefunction can be written as Ijfk(r) = 
S-l/* exp(ikl1- q)q  k ,  (z) with a band energy Ek. Here r = (q, z )  with rll= (x, y) and S is 
the area of the x-y plane. We consider a many-body system composed of N electrons 
interacting with one another via a Coulomb potential, coupled with phonons and scat- 
tered by n, randomly distributed impurities. The Hamiltonian of this system can be 
written as 

[51. 

H =  He + Hp + Hep + He, (1) 
He = E k C k + C k  + v(q, k , ,  k:)c,+,qc:-qcktck (2) 

k q, k, k’ 
t Correspondence address. 
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H e p  = c M ( q ,  A) (bqA + b?qA)Pq ( 5 )  
q J  

where c: and ck are electron creation and annihilation operators corresponding to the 
single electron states q k ,  pq represents the Fourier transform of the electron density 
operator, b& and bqA are the creation and annihilation operators for phonons with 
wavevector q in branch A ,  R,  is the position of the ath impurity, M ( q ,  A) is the electron- 
phonon matrix element, V(q., k,, kk) denotes the Coulomb potential between electrons, 
where 

exp(-qll I z  1 - z 2  1)q k ;  ( z 2 )  q k ,  ( z  1 ) 
and u(q, k,, z,) denotes the impurity potential 

with E being the background dielectric constant. The system we are discussing is an 
anisotropic one, such that the Coulomb and the impurity potential, as well as the 
density operator pq, have more complicated expressions than those in isotropic three- 
dimensional ( 3 ~ )  or two-dimensional ( 2 ~ )  systems. 

When a uniform AC electric field of frequency lo is applied parallel to the layer plane, 
the steady-state linear conductivity a(w) for this system can be expressed by means of 
the memory function M ( w )  [5]  as 

where N as the 3~ density equals the ZD density divided by d. The expression for M ( u )  
can be derived as the linear limit of a frequency-dependent generalisation of the non- 
linear balance-equation theory of transport [2, 61. The derivation involves the analysis 
of the correlation function ( ( c : + , c k l c l t  - q c k ' ) ) w  and an average over impurity sites. 
Generally, M(o) can be expressed as the sum of two terms: 

(9) 
where M'(lo) is the impurity contribution to the memory function and MP(lo) is the 
phonon contribution to the memory function. To illustrate we give the expression of 

a(@) = i(Ne2/m) I/(W +  lo)) (8) 

M (  lo) = Mi( lo) + MP( lo) 

Mi( lo) : 

where g(q,) is an impurity correlation function [2, 61, which is defined in coordinate 
space 

(11) 
and u(q,  k,) denotes the effective impurity potential 
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’ -d /2  

Here we have introduced an impurity distribution function P(z,) satisfying the nor- 
malisation condition 

A similar expression can be obtained for the phonon contribution to the memory function 
MP(u).  We omit this here to save space. 

To proceed we have to calculate the Greens functions such as ( ( C ~ + + ~ C ~ ~ C ~ ~ - ~ C ~ ) ) ~  

involved in the expression of the memory function M ( w ) .  In an anisotropic many-body 
system such as a tunnelling superlattice, the k,-dependence in V(q, k,, k i ) ,  u(q, k,) and 
p q  makes it difficult to solve the RPA equation for the correlation function 
((~k++~c~lck+, -qckr ) )w in contrast to the case of an isotropic system. This difficulty has been 
surmounted in weak tunnelling cases by the newly developed matrix separation tech- 
nique [3, 41 for the density correlation function. By means of the tight-binding wave- 
function and the nearest-neighbour overlap approximation, the electron-electron 
interaction and the density operator can be written as a series of separable factors in 
matrix form [3,4]. In the same way, the impurity potential can also be expressed as 

where we have defined two one-low matrices: ?(IC,) = (1, cos k,d, sin k,d) and 

with their transpositions f’(k,) and fi’(q). Here, A k ,  = (1 + 2acos k,d)-’/’  with a = 
J@(z)@(z - d) dz,  where @ ( z )  is a ‘single-well wavefunction’, which is chosen to be real 
and normalised by J @ ( z ) ~  dz = 1, and 

4 4 ,  kz)  = % ) m ) A k , + q , A k ,  = ~(~z) f i r (q)Ak, fq ,Ak,  

fi(4) = (wz), fi2(4), f i d 4 ) )  

(14) 

(15) 

dl2 
ai(q) = - 2ne2 id’2 P(z,) dz, 

‘411 -d/2 i, exp(iq, - z,)S(z - z , ,  qlfi(z, 4,) dz (16) 

(i = 1,2 ,3)  in which 

f l @ ,  42) = @W2 + [ @ ( z  + 4’ + @G - dl2I cos q z d  

f 2 ( Z , q z ) = @ ( Z ) [ @ ( Z + d )  +@(z--d)l(cosqzd+1) 

+ i[@(z + d ) 2  - @(z  - d)’]  sin q,d 

(COS q,d - exp(-q(ld)) cosh q11(z - z ’ )  + i sin q,d sinh qI,(z - z r )  

cosh q11d - COS q,d 
+ 

By means of these matrices the memory functions Mi(w) and MP(o)  can be explicitly 
expressed as 
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where the imaginary part of A is 

Here n(x/T) = 1/(exIT -1) is the Bose function and 112 is the imaginary part of the 
electron density correlation function n(q, w )  which can be obtained from the relation 
[3,41 

W q ,  0) = P ( q z ) J t ( q ,  u ) P ’ ( - q z )  (21) 
where we have defined a one-row matrix $(q2)  = ( p 1 ( q 2 ) ,  p 2 ( q 2 ) ,  p 3 ( q z ) )  with its trans- 
positionP’(q,), elements of which can be expressed as 

pi(qz) = id’’ exp(iqzz)fi(z, q z >  dz i = 1 , 2 , 3  (22) 
- d /2  

and &(q, U) is the matrix density correlation function which can be expressed in the RPA 

as [3,41 
Jt(q, 0) = (1 - q q ,  w)V(q))-lJtO(q, 0). (23) 

Here V(q) is a 3 X 3 matrix effective Coulomb potential having the elements ( i , j  = 
1 , 2 , 3 )  

and .7to(q, U )  is a 3 x 3 matrix density correlation bubble given by 

(25) 
where nF(E) is the Fermi function. 

Now, the memory function M(o) can be calculated directly as long as the single-well 
wavefunction is given. Here, we pay attention to the contribution of plasmon pole to 
M i ( o )  the imaginary part of the memory function due to impurity scattering, which has 
been focused upon by many authors [2 ,7] .  For a quasi-2~ superlattice system in which 
the tunnelling was neglected, Lei et aZ[2] showed a strong resonance around the plasmon 
frequency, and for a 3~ bulk system, Ron and Tzoar [7] found a relatively weak (15%) 
effect from the contribution of plasmon poles. In the tunnelling superlattices, how 
electron tunnelling affects the contribution of plasmon poles to M i ( @ )  is interesting. 

For a completely uncorrelated distribution of impurities g(qJ = 2z6(q2d) ,  the 
enhancement of M ; ( w )  comes from the long-wavelength (411 - 0 and q2 = 0) plasmon 
contribution at CI) = wp = ( 4 ~ ~ e ~ N / & m ) ’ / ~  (at zero temperature). In the limit, the density 
correlation function bubble can be solved as 

n0k, w) = “1 ( q i / w 2 )  + (3nN2d/2m3C*)  (qi/w4) (42 = 0) (26) 
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- N  s 
I .I 

where 

- 
I 3” 0 5 0 -  
U 

0 25 - 

0, I 

(x2 + 1/2) cos-lx - (3/2)x(1 s x y 2  -l 

(1 - x2)”2  - x cos-1x E )  1x1 s 1 (27a) 
c,  = I( 

(27b) ((1 + x-2/2)-1 x < - 1 .  

Here, x = ( t  - EF)/t ,  tis the half-width of the miniband and EF is the Fermi energy which 
is determined by the electron density N .  The jump of Mi(w,) due to the plasmon pole 
can be obtained from the behaviour of IIo(q, o) at small 411 as 

AM;(WJ = c,&z, (e’/&)’/’ (28) 

AM;(op)/AMi(~p)lr=O = c, 

If electron tunnelling was neglected, t = 0 and C, = 1, equation (28) reduces to the 
results of Lei et a1 [2]. We show 

as the function of t/EF in figure 1. A M ~ ( O ~ ) ~ , = ~  is the value of AMi(u,) calculated by 
neglecting the tunnelling. From equation (27), we know C, < 1. In figure 1, it can be 
seen that the contribution of the plasmon oscillation to Mi(wp) is obviously diminished 
due to the electron tunnelling. 

In the general case, the impurity distribution has some correlationg(q,) # 2n6(qZd) ,  
and the plasmon modes of qz # 0 will contribute to the M i ( w ) .  For an anisotropic 3D 
system similar to the tunnelling superlattice, the plasmon frequency op(q) is given as 
[3 ,4,  &lo1 

w2p = ( w h i  + w ; d ) / ( q j  + 42) (29) 
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where o& = 4nNe2/&m,  w i  is the contribution due to the electron tunnelling which is 
given by 

[ 2e2mdt2/&h2 EF > 2t 

(30) 
ogC<oB) is a gap in the plasmon spectrum [3, 4 ,  8-10], with magnitude directly pro- 
portional to the half-width of the miniband t. The plasmon contributions begins at lower 
frequency og. The contribution of plasmon poles from long-wavelength range to 
M i ( @ )  for og < o < wB can be estimated from 

Since the range of qz limited by the plasmon becomes small when the tunnelling increases, 
the A M ~ ( o J ) / A M ~ ( c o ) ~ ~ = ~  is not larger than c(wg) = 1 - w i / o 2 .  We plot the function 
c(wJ in figure 2, which shows that the electron tunnelling will greatly weaken the 
contribution of plasmon oscillation to the M i ( o ) .  

In summary, we have presented a theory of dynamic transport of electrons in the 
tunnelling superlattices, and estimate the contribution of plasmon poles. We show that 
the contribution of plasmon oscillation, to the Mi(co) decreases from the strong res- 
onance of the quasi-zD superlattice system to a relatively weak effect of the 3~ bulk 
system with the increase of the electron tunnelling. This behaviour is a characteristic of 
the crossover between 2~ and 3~ for the tunnelling superlattice systems. 
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